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When a liquid saturated with gas (n-hexane with carbon dioxide) is filtered through a 
porous medium, a sharp increase in the flow rate (by ~2-3 times) has been observed [i] when 
the gas pressure at the exit of the porous medium is reduced close to that to the gas evolu- 
tion pressure; when the exit pressure is further reduced, the flow rate drops. Here, we 
present a "gas bearing" model to explain this effect (the sharp increase in the liquid flow 
rate). Expressions are obtained for the relative phase permeability within the framework 
of this mechanism, and these are used to construct stationary and self-similar solutions. 
These solutions are compared with experimental data and analyzed. 

i. Basic Equations. We now examine the liquid flow in a porous medium in the presence 
of gas evolution. The subscripts 1 and 2 denote parameters for the liquid and gas phases. 
The equations for the conservation of mass for two-phase filtration have the form [2-4] 

0 0 
05 (p?mS1) + V. (p~mSlvt) = - I ,  ~ (p~mS2) + V. (p~mS2v2) = I, ( 1 . 1 )  

where 9~, Si, ~, m, and I are the density, saturation, velocity, porosity, and the gas 
evolution rate for a unit volume of porous medium. If we assume that only dissolved gas is 
considered in the mass transfer between the phases, then the continuity equation for the dis- 
solved gas is written as 

0 
O~ (p?gmSx) + V. (p~mSlvl) = - I ,  ( 1 . 2 )  

where g is the mass concentration of the dissolved gas. The momentum equations for the gas 
are a generalization of Darcy's law: 

mSivi = _ k K i v p  (i = 1 2). ( 1 . 3 )  
~i 

Here k, K i, and ~i are the absolute permeability of the porous medium, the relative perme- 
ability, and the dynamic viscosity. 

We use Henry's law for the concentration of the dissolved gas versus the pressure in the 
gas-evolution region and assume that the gas phase satisfies the Clapeyron-Mendeleev equa- 
tion: 

g = ap,  P = 9~ ( 1 . 4 )  

We also neglect the dependence of the parameters G, R, m, and ~i on pressure and assume 
that the process is isothermal (T = T o = const). 

Hereafter we exclude I from Eqs. (i.i) and (1.2) and, instead of three equations, use 

two : 

_o [m (97S~ + 0~S2)] + V. [m (p~ + 9~S2v2) l = O; ( 1 . 5 )  
ot 

_0 [mpO (1 - g) S~] + V. [rap ~ (1 - g) S~v~] = O. ( 1 . 6 )  
ot 

2.  R e l a t i v e  P h a s e  P e r m e a b i l i t y .  E q u a t i o n s  ( 1 . 3 ) - ( 1 . 6 )  f o r m  a c l o s e d  s y s t e m  when t h e  
relative phase permeabilities K i are given as functions of S i. In order to obtain these 
equations, we use a "gas bearing" model, according to which we assume that the gas phase in 
the porous medium basically flows in a layer on the pore wall in the zone where gas evolution 
starts. According to this hypothesis, the best conditions for evolution of the gas dissolved 
in the liquid occur in the contact zone between the liquid and the wall of the porous channels 
(for example due to sites for nucleus formation). 

Tyumen'. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 5, pp. 97- 
106, September-October, 1993. Original article submitted December 17, 1991; revision sub- 
mitted May 21, 1992. 

686 0021-8944/93/3405-0686512.50 �9 1994 Plenum Publishing Corporation 



We now use this "gas bearing" model to examine an auxiliary problem of annular layered 
gas-liquid flow medium in the inertialess approximation in a cylindrical channel. We as- 
sume that the gas phase flows in an annular layer on the channel wall. Moreover, we assume 
that the velocity distribution follows Poisseuil, le flow in every section of the channel and 
satisfies the equation 

= -  ~ =  ( 2 . i )  rOr dx 2, a - 6 < r < a  ' 

where v~ is the radial velocity distribution for the cross section at x, and a and ~ are the 
radius of the channel and the thickness of the annular gas layer. By assuming that (the 
gas) sticks to the channel wall, equality of the velocities and the tangential stresses on 
the interphase surface 

, , dvl Otd 
( r  = a) ,  vl = v2, ~q -~r = ~t~ -~r ( r  = a - ~5), ( 2 . 2 )  v~ = 0 

gives a velocity distribution 

[.r 2 - (a - 8)2 ( a - b )  2 - a 2] dp r 2 ~ ' 

v; = 4~( + J v~ = - " ap - 4,2 ~ '  4~,2 dx" ( 2 . 3 )  

We introduce the flow-rate-averaged velocities: 

= ~ / & ,  ~ = f ~ d ~  ( i =  1 , 2 ) ,  
ri (2.4) 

&=x(a-5) 2 , &=~ls F=&+&, 

where F i is the cross-sectional area of the channel relative to the i-th phase. By substi- 
tuting (2.3) into (2.4), we obtain a relationship between the flow-rate-averaged velocities 
and the pressure gradient: 

Vl = 8 ~ t  I dx' V i= 8 ~ i d x  ~ = ~ " ( 2 . 5 )  

We compare Eqs. (2.5) and (1.3). The relative phase permeabilities are taken to be those 
values which provide the same flow velocities in both the cylindrical channel and the porous 
medium for the same pressure gradients. In the comparison, it is natural to ass~le that the 
ratio k/m in Darcy's law (1.3) corresponds to F/8~ in (2.5) and that the phase saturation 
corresponds to Fi/F. Then the phase permeabilities can be written as 

K, = (1 - S2) 1~ + (2 - ~) & l l ~ ,  & = S~. ( 2 , 6 )  

It follows from these expressions that K I > 1 for S 2 > 0. This situation is not very usual 
from the viewpoint of filtering gas-liquid media, where each phase completely occupies the 
pore volume it flows in. We note that the layered flow model used in obtaining (2.6) is not 
realized in a "pure" sense. This hypothesis is only a limiting idealization of the gas-liquid 
flow when the dominant part of the gas phase separates and flows in a layer on the wall. 
Furthermore, we note that the flow structure in the porous medium is not affected by gravity 
in these filtration processes, because the Bond number Be = 9~gdi/o ~ 1 (here g is the ac- 
celeration due to gravity, d is the characteristic pore diameter, and o is the surface ten- 
sion). Therefore the capillary forces dominate the force of gravity. 

If, we invert the previous case and assume that the liquid flows next to the wall and 
the gas in the middle, we have for the relative phase permeabilities 

K ~ =  S~, ~ = (1 - S 0 [1 + (2~ - 1) $1]. ( 2 . 7 )  

For an equal-velocity flow model (v I = v~), we have 

K1 = S z / ~ . ,  ~ = (1 - St) ~ / ~ .  (~* = ~* /~ , ) ,  ( 2 . 8 )  

where ~, is the effective viscosity for the gasified liquid. 

3. Steady-Stat e Filtration. We now examine one-dimensional steady-state filtration 
flow. It follows from (1.5) and (1.6) that 

d 
!d~ [x~-~ (~?S~< + p~&v~)l = 0, ~ [x'-~P~ 0 " ~  &v~] = O. ( 3 . 1 )  

The values v = i, 2, and 3 correspond to the plane, cylindrical, and spherical cases. By 
integrating these equations we find 
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x ' - '  (p?S~v, + p~S2v2) = ~'-~ptv~,~ x~-'p~ (1 - ~ S,vl = ~-'p~ (1 - ~) v . ,  (3 .2 )  

where x s i s  the coord ina te  where gas e v o l u t i o n  s t a r t s .  The a d d i t i o n a l  s u b s c r i p t  s i n d i c a t e s  
t h a t  the parameter va lue corresponds to t h i s  sec t i on  (x = Xs) .  The r i g h t  s ides o f  (3 .2 )  are 
written for Szs = 1 and S=s = 0). 

From (3.2) and (1.3) we obtain 

~K~ t - g ( x ~ l  ' - ~  (g,  - g )  ~? 
~ ) [ ) / l  _--,-~/ = ix /  v , ,  K,  = ~ - - - - - - - - 6  K,. m~--~ 0 --g,) p2 

(3 .3 )  

The additional parameter G and the quantity RT in (1.4) are written in terms of the parameter 
values at the section where gas evolution starts: 

G = g, /Ps,  R T  = p / p C .  ( 3 . 4 )  

If Eqs. (2.6), which correspond to the "gas bearing" model, are used for the Ki, then it 
follows from (3.3), (1.4), and (3.4), that 

k u.  

= - /  U , )  ix) ' (3.s) 

(1 - gO Ps [r - ~  -1" - ~ )  P - (1 - ~) psv~f~-  p ]  2 p c  (1 - gs) 
f ( l  3) = .Lt). p (pr - grp) ' ~ - -  o ' 

P~gs 

from which we find the pressure as a function of the coordinate 
p x 

Ps Xs 

Here the velocities and the gas saturations are given as functions of the pressure and the 
coordinates by 

ix, l 
v~ = (~ _ g,p/v,) (~ - s2) ~Tj ' v, = ~ + (2 - ~) s2 t,~, 

(3 .7 )  

$2 = psCp~---(l - / j~)  p - (1 - ~) r ----p' Sl = 1 - $2. 

Let P0 be the pressure at x = x 0 and let P0 > Ps" Then the pressure p in the region x s < 
x ~< x 0 is higher than the pressure Ps for the start of gas evolution (p > Ps); therefore in 
this region we have single-phase liquid filtration. If we set f(p) = i based on (3.5), we 

obtain 
x 

p = pc m~,lo~k f ( x / x y - ~ d x  (x, < x <x0). (3.8) 
xo 

(3.7) and (3.8) that It follows from Eqs. 

1 f f_~ (p) dp, ( 3 . 9 )  x ~ - l d x  I Pc - P,~ 

W ~ / p~ 

where Pe is the pressure at the exit from the porous medium (x = Xe). This equation makes 
it possible to obtain a relationship for the position of the coordinate for the start of gas 
evolution as a function of P0, Ps, and Pe. The integration constant Vls, which is the liq- 
quid-phase velocity in the section where gas evolution starts, can be determined from 

ut~ = " ~  ( x , / x ) , - l d  , ( 3 . 1 0 )  

w h i c h  f o l l o w s  f r o m  ( 3 . 8 )  w i t h  x = x s a n d  p = P s "  

I f  t h e r e  i s  n o  g a s  e v o l u t i o n ,  we h a v e  t h e  f i l t r a t i o n  v e l o c i t y  o f  t h e  l i q u i d  t h r o u g h  t h e  
b o u n d a r y  o f  t h e  p o r o u s  m e d i u m  ( x  = x e )  f r o m  E q .  ( 3 . 8 )  

688 



Xe v - I  ] - 1  

U ~  J 

We now write the expression for the gas and liquid filtration velocities at the boundary 
of the flow region (x = Xe): 

uie=mSieoie= kKie(dP)x ( i =  l, 2). 
- .~-  ~ (3.12) 

e 

C o n s i d e r i n g  ( 2 . 6 )  and  ( 3 . 3 ) ,  we o b t a i n  f r o m  ( 3 . 1 2 )  t h a t  
v - 1  

UIe = - -  ?nVls~ ~2e ~ Ule .  
Ps - gsPe ~,.Pe 

We r e d u c e  ( 3 . 1 3 )  t o  a d i m e n s i o n l e s s  f o r m  by u s i n g  Eq. ( 3 . i 0 )  i n s t e a d  o f  V l s  and  by c o n s i d e r -  
i n g  ( 3 . 1 1 ) :  

1 (]  - g,) p. (po - p.) x . - ~ d x  
QI,. = (p. _ gspe) (po - p.) 

V ~ ] 

Q2e= Ps-Pegle, ~e= 
~Pe 

0 ~ /  0 * 
The parameter Q~ = (9~ + p2cu2e), plU~ , which determines the 
gas-liquid mixture, is obtained by comparison with the 
consideration of (3.14): 

/ x e 

= p0P~ _- p,P'------ [ {  x~-~dx 

- I  

t! "1".) ( 3 . 1 4 )  

U~ 

Us 

change in the mass flow rate of the 
case w i t h  no g a s  e v o l u t i o n  and  w i t h  a 

I xf ~ xV-ldx. 

-1  

(3 .15 )  

We now consider the two-dimensional plane case (v = i) in more detail. We assume that 
x e = 0 and  x 0 = s Then t h e  p o s i t i o n  w h e r e  g a s  e v o l u t i o n  s t a r t s  i s  o b t a i n e d  f r o m  ( 3 . 9 )  

xs = l 1 1 f-I (p) dp 
PO - Ps 

Ps 

We w r i t e  t h e  e x p r e s s i o n s  f o r  t h e  d i m e n s i o n l e s s  f l o w  r a t e s  ( 3 . 1 4 )  and  ( 3 . 1 5 )  i n  t h e  t w o - d i m e n -  
s i o n a l  p l a n e  f o r m  

Pe 

Qe = Po - Ps I f (I - g,) P________i Qe. 
P0 - P~ P0 - P~ I"-1 (p) dp, Ql~ = p, _ gin, 

Ps 

The conditions ~ ~ 1 and X = O(I) are usually fulfilled for most liquids and gases. 
where the inequality 

p , -  p >> ~ p . ,  

Then, 

is fulfilled, the expression for the pressure function f(p) from (3.5) can be simplified: 

(I - g,) pm 
f (P) = 4 (ps - gsp) (ps - p) ' 

By substituting (3.16) into (3.6) we have for v = I: 

X- X s = 4 [ ] 
x, ~ ( l ,g,) (po PO L ( I + g ) (P' - P) + p" In  P- + g" (P2 = Pf) 

- - .s -J" 

Here we have for the flow rate 

Q~=-#i(1 g.)(po p,) (1 + g ) ( p . - p . ) + p ,  ln p~+ ~ (p~-p2) po-p. 
- - ps ~ + - - "  po - Pe 

We note that the use of (3.16) in Eq. (3.5) corresponds to neglecting the length of the two- 
phase filtration zone, where p is small compared to Ps. 

(3.16) 

689 



2- 

p, MPa 

s~ 

a,4 

o o q2 

~p, MPa 
F i g .  1 F i g .  2 F i g .  3 

For generality we present the expression for the pressure function for the inverted 
flow, where the liquid flows next to the wall and the gas flows in the center. By using 
Eq. (2.7) for the relative phase permeability, we obtain 

/ ( p ) =  O - r a p '  ~i2+ ~(~ + ( l - ~ i )  . 
Ps - &P ~P 

We c o n s i d e r  ( 2 . 8 )  i n  t h e  f r a m e w o r k  o f  o n e - d i m e n s i o n a l  f l o w  and f i n d  

(3.17) 

f ( p ) = ~ , ( 1 - & ) P s  (l  + _ &P ~ . ( 3 . 1 8 )  

Here  t h e  e x p r e s s i o n s  f o r  t h e  d i m e n s i o n l e s s  f l o w s  Qie  h a v e  a fo rm which  c o i n c i d e s  w i t h  ( 3 . 1 4 )  
and ( 3 . 1 5 )  w i t h  t h e  c o r r e s p o n d i n g  s u b s t i t u t i o n  o f  t h e  p r e s s u r e  f u n c t i o n  i n t o  Eqs .  ( 3 . 1 7 )  and 
(3.18). 

Figure i shows calculated results for the dimensionless flow rate Q1e as a function of 
the pressure drop Ap (Sp = P0 - Pe) relative to experimental data [i]. The following values 
were used for the mixture properties and the experimental conditions: P0 = i0 MPa, ps = 3.8 
MPa, p~ = 700 kg/m 3, 0 = = P2s 68 kg/m 3, gs 0.ii, Pl = 3.6"10-4 Pa.sec, and P2 = 1.7"10-5 Pa. 
sec [~ = 0.05 and X = 0.88). The solid curve corresponds to the "gas bearing" model, and the 
dashed and the dot-dash curves to the inverted and equal-velocity models for flow of a gasi- 
fied liquid in a porous medium. From Fig. 1 it can be seen that using the "gas bearing" model 
gives the better qualitative and quantitative description of the experimental data in the sec- 
tion where the flow rate rises rapidly and where the exit pressure from the porous medium 
becomes less than Ps = 3.8 MPa. We note that, according to the inverted and equal-velocity 
models, gas evolution leads to a reduced liquid flow rate (blocked flow). However, the ex- 
perimental data on the flow rate reduction when the exit pressure is further reduced (hp 
7.7 MPa and Pe ~!2.3 MPa) cannot be explained and are described by none of the models. This 
situation evidently is explained by the fact that the gas saturation is large under these 
conditions in the filtration-flow region next to the exit from the porous medium (x = Xe). 
Therefore gas flow continuity is lost in this region. The liquid condenses in to discon- 
nected droplets. Pushing the disconnected droplets through the porous medium requires a pres- 
sure gradient estimated by 

Ivpl = o/d. 

For this case (o = 17.4-I0 -~ kg/sec 2 and d = 5"i0 -s m), we thus have 

lVpl = 8MPa/m. 

Figures 2 and 3 show the distributions of the pressure and the gas saturation in the 
porous medium in the two-dimensional plane case (v = i) for various pressures at the exit 
from the porous medium (curves 0-4 correspond to Pe = 3.8, 3.3, 3.0, 2.7, and 2.3 MPa). 
Values mentioned above were used for the other phase properties. The equations used in the 
two-phase region were those obtained from the "gas bearing" model. It can be seen that gas 
evolution greatly reduces the slope of the pressure-distribution curve, which in turn in- 
creases the flow rate, shown in Fig. i, in the gas-evolution section (hp ~ 6.2 MPa). 

We note that the filtration of gasified liquid does not always occur under "superfluid" 
conditions, generally speaking, but only for a certain combination of material properties 
for the porous medium and the liquid. 
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Self-similar Solution. For two-dimensional plane flow (v = i) we have from (1.5) . 

and (1.6), with a consideration of (2.6) and the equation of state (1o4), that 

! 0 . { OxJ = 0; (4.  i )  ot li + s~ (~%p - I ) l -  •  x It + s ~ ( K o ~ P  - 1)] ~ 

0 ' 0 
05I(1 S 2 ) ( l - g ) l - •  K ( 1 - S 2 ) ( I - g )  ~ = 0  (4 .2 )  

0 P~ P kPs (g=~t ' ,  p ~ = ~ - ,  e = - -  •  , K= [ ~ + ( 2 - ~ ) S ~ I / ~ ,  K ~ = ~ S J I  O. 
p [ Ds ' m~ t 

Now we examine the problem of filtering the gasified liquid in a semi-infinite region 
(x > 0) under the following initial and boundary conditions: 

P(x, 0)= I, S~(x, 0)=0, P(0,0=~ (~<I). (4.3) 

The initial condition in (4.3) for the pressure [P(x, 0) = i for S~(x, 0) = 01 is re- 
quired in this formulation for an incompressible fluid (9~ = const). Actually if we set 
P(x, 0) = Pe > i and Pe < I, then for some coordinate x = Xs, where x s is the coordinate 
where gas evolution starts, P(xs, t) should equal unity. Because an incompressible liquid 
is filtering in the region x s < x < ~ [S2(x, t) = 0] then the pressure should be uniform 
in this region [P(x, t) = const]. Here the dimensionless pressure is equal to unity at 
x = x s. Therefore, P(x, t) should be unity in the whole region x s < x < ~. 

This problem is self-similar. We introduce the self-similar variable ~ = x/v~7. The 
Eqs. (4.1) and (4.2) are written in the form 

1t + $2 (p~P 1)1 +---~ [1 + ~ j  =0 ;  (4.4) - - -  - K $ 2  ( K ~ 9 ~ P  - 1) ] dP 

~ d d dP 
ca t ( I - S ~ ) ( t - ~ P ) ] + ~ .  K ( I - S 2 ) ( 1 - ~ P ) - ~ -  = 0  (4.5) 

with initial and boundary conditions 

P ( ~ ) =  1, $ 2 ( ~ ) = 0 ,  P ( 0 ) = ~ .  ( 4 . 6 )  

Flow rates through the boundary of the semi-infinite region, determined from the equations 

under the filtration conditions in question are given by 

kK+ep~(dP) - ( 4 . 7 )  

~ = - ~ - ~  ~ ~:o" 
From this it can be seen that, in order to calculate the flow rates Uie , we must find 

the values of dP/d~ and S 2 for $ = 0. This in turn requires obtaining the distribution of 
the pressure P and the gas saturation S 2 from the third-order nonlinear Eqs. (4.4) and (4.5) 
with boundary conditions (4.6). The system (4.4) and (4.5) was integrated numerically as 
follows. By linearizing and doing several transformations of this system, we obtain 

dP dS2 ( 4 . 9 )  

By c o n s i d e r i n g  t he  c o n d i t i o n s  ( 4 . 6 ) ,  we o b t a i n  from (4 .8 )  and (4 .9 )  t h a t  

+:p r = ~ (t-P) (r ~0-g)l 
) 

By solving the system (4.10) with the boundary conditions (4.6) at infinity, we find 

(4.1o) 

P = 1 - A .~ exp (-r162 d~, dP/d~ = A exp (-rl2~2/4). (4 .11)  
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We use these solutions to choose the initial Cauchy data for numerically integrating the sys- 
tem (4.4) and (4.5). Here the "initial" coordinate $0 is chosen for a given value of A such 
that linearization conditions are fulfilled for ~ > ~0 

- , , ~ 1 .  ( 4 . 1 2 )  

Then the Cauchy problem is solved numerically for Eqs. (4.4) and (4.5) for the "initial" 
conditions (g = ~0) 

Po = 1 - A f exp (-T12~2/4) d~, 
~0 (4.13) 

dP 
= A exp ( : ~ 2 ~ / 4 ) ,  $2o = (1 - Po)/X 

in the range 0 ~ ~< ~0. By choosing various values of A, we obtain the distribution of the 
pressure and the gas separation for various pressure drops AP = 1 - Pc" 

Figures 4 and 5 show pressure and gas-saturation distributions as functions of the self- 
similarity coordinate for various pressure drops (curves 1-4 correspond to AP = 0.015, 0.045, 
0.095, and 0.18). We used values given in Paragraph 3 for the parameters of the gas-liquid 
system. 

Based on solutions of (4.11), we can examine self-similar filtration conditions for a 
gasified liquid when the conditions of (4.12) are fulfilled over the whole flow region. It is 
not difficult to see that the condition 

must be fulfilled to realize this solution. Then the solution to (4.13) is written in the 
form 

P = 1  - - ~ -  exp - d~, 82 = - - i - -  

H e r e  t h e  f l o w  r a t e s  t h r o u g h  t h e  b o u n d a r y  r e g i o n  a r e  

. k,lAp . S~k,IAp Ap = Ps - Pe, S~ = A p / ( x p ,  ). 
ule - ~ l ~ " ~ '  u ~  - ~ , (4.14) 

We introduce a dimensionless parameter Q~e for the liquid flow rate as a ratio of the flow 
rates determined from Eqs. (4.7) and (4.14): 

Ql~=ul"-"i~=K'e(d'-~)~=o'Uie* ~AP 

The parameter Q~e to some degree reflects the change of the flow rate due to the "gas bearing" 
effect under self-similar filtration conditions. 

Figure 6 shows Q~e as a function of the dimensionless pressure drop. Previous values 
were used for the properties of the gasified liquid and the porous medium. It can be seen 
that using the "gas bearing" model for self-similar filtration conditions leads to a signifi- 
cant growth in the liquid flow rate (Q~e becomes greater than unity). 

692 



For comparison, we also introduce expressions for the flow rate of a "pure" liquid under 
elastic filtration conditions, which correspond to analogous initial and boundary conditions 
used to obtain (4.14): 

0 2 kAp kplC1 
u,-~1~C~t,  •  ,n~1 ' (4.15) 

where C I is the sound speed in the liquid. Then the ratio of the liquid flow rates deter- 
mined by (4.14) and (4.15) for the same Ap is 

ul~/u~ = C / C ,  C = ~ ( 1  - a ) ~  ( 4 . 1 6 )  
- 

Here  C c o r r e s p o n d s  t o  t h e  e q u i l i b r i u m  sound s p e e d  f o r  t h e  g a s i f i e d  l i q u i d  n e a r  t h e  s t a r t  o f  
g a s  e v o l u t i o n .  I n  p a r t i c u l a r ,  f o r  t h e  m i x t u r e  o f  n - h e x a n e  and c a r b o n  d i o x i d e  g a s  examin ed  
a b o v e ,  C ~ 75 m / s e c  (C 1 ~ 10 a m / s e c ) .  T h a t  i s ,  as  f o l l o w s  f rom Eq. ( 4 . 1 6 ) ,  t h e  p r e s e n c e  o f  
g a s  e v o l u t i o n  g r e a t l y  i n c r e a s e s  t h e  g a s  f l o w  (by  more  t h a n  10 t i m e s )  compared  t o  t h e  c a s e  o f  
f i l t r a t i o n  o f  a " p u r e "  l i q u i d  w i t h  e l a s t i c  c o n d i t i o n s .  T h i s  s i t u a t i o n  i s  r e l a t e d  t o  t h e  e f -  
f e c t  o f  t h e  c o m p r e s s i b i l i t y  o f  t h e  g a s - s a t u r a t e d  l i q u i d  due t o  g a s  e v o l u t i o n .  

Thus ,  when a g a s - s a t u r a t e d  l i q u i d  i s  f i l t e r e d  t h r o u g h  a p o r o u s  medium and t h e  e x i t  
p r e s s u r e  f rom t h e  p o r o u s  medium i s  r e d u c e d  t o  v a l u e s  f o r  t h e  s t a r t  o f  g a s  e v o l u t i o n ,  t h e  
s h a r p  i n c r e a s e  in  t h e  f l o w  r a t e  can  be e x p l a i n e d  by t h e  " g a s  b e a r i n g "  e f f e c t ,  wh ich  l e a d s  t o  
a " s u p e r f l u i d "  f i l t e r i n g  l i q u i d .  When t h e  e x i t  p r e s s u r e  i s  r e d u c e d  f u r t h e r ,  t h e  r e d u c e d  f l o w  
r a t e  i s  e v i d e n t l y  r e l a t e d  t o  a l o s s  o f  f l u i d  c o n t i n u i t y  (when t h e  l i q u i d  c o n d e n s e s  i n t o  s e p a -  
r a t e  d r o p l e t s )  in  t h e  p o r o u s  medium n e a r  t h e  e x i t .  

The a u t h o r  t h a n k s  R. I .  N i g m a t u l i n  f o r  h i s  a t t e n t i o n  t o  t h i s  work and f o r  u s e f u l  d i s c u s -  
s i o n  of its results. 
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